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Abstract. The hyper-Raman effect is treated theoretically from the quantum statistical 
point of view. For this purpose a master equation, based on a microscopically correct 
Hamiltonian, is derived and then solved analytically. The solution obtained is quite 
general and enables computation of the complete joint probability distribution for arbi- 
trary time and any initial conditions. 

It is well known that when sufficiently intense monochromatic radiation of frequency 
w1 is scattered by a system, the scattered radiation will contain not only the frequen- 
cies w1 (Rayleigh scattering) and w 1  f Iw I (Raman scattering) but also frequencies of 
the type 2wl  and 2wl*lwl where w is the transition frequency (see Long 1972). The 
new frequencies are in fact respectively associated with what is called hyper-Rayleigh 
and hyper-Raman scattering. A theoretical treatment of the hyper-Raman effect has 
been considered by Long and Stanton (1970). On using the density matrix method 
they derived general formulae which give information on the frequencies of the 
scattered radiation, the scattering mechanism and resonance processes. From these 
results it has been shown that the anti-Stokes hyper-Raman emission at 2wl + 1 0 1  only 
takes place in the case where a downward transition is involved and the transition 
frequency w has a positive value. In a similar manner, the Stokes hyper-Raman 
emission at 2wl- lwl  only takes place in the case where an upward transition is 
involved and the frequency w has a negative value. 

The purpose of this paper is to consider the problem of the Stokes hyper-Raman 
effect (SHRE) from the quantum statistical point of view. No such treatment has so far 
appeared, and therefore it should be of interest to know how the statistical natures of 
the light fields involved are disturbed. On using a microscopically correct Hamil- 
tonian, an equation which describes the rate of change of the joint probability 
distribution P,,,, caused by the SHRE, is derived and then solved analytically by using 
a Laplace transform method similar to that used by Simman (1975) for the analogous 
process of the stimulated Raman effect. 

Consider that the SHRE occurs, simply due to the interaction of the incident and 
scattered light beams with a gas of N identical two-level atoms. In each elementary 
scattering event of the process this kind of interaction simultaneously destroys two 
photons, each of frequency w l ,  and creates a single scattered photon with frequency 
w2 = 201 - Iw( where w is the frequency separation between the atomic ground state 
11) and the excited state 12). It is worth mentioning here (see Long and Stanton 1970) 
that the SHRE proceeds by three transitions; photons w 1  are absorbed at two of the 
transitions, whereas a photon w2 is emitted at the third. This implies that there are 
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three electric-dipole interactions altogether, and the atom which is in its ground state 
11) before the process gets excited to two virtual intermediate states during the SHRE 
and finally settles down into its excited state 12) after the process. It is assumed that 
the atoms only have transitions of the required frequency for the Stokes component of 
the hyper-Raman effect, where its anti-Stokes component is ignored, and the condi- 
tions needed for any other process to occur are also taken to be badly satisfied. The 
total Hamiltonian H, which describes our system, then has the form 

i 

where R = h/27~, h is Planck's constant, a:  and a& are identified with the photon 
creation and destruction operators for the kth mode, Xi is the dipole matrix element 
for the SHRE, and finally c $  cii ,  cli and czi are the creation and destruction operators 
for the jth atom in the states 11) and 12), respectively. In the above description no 
account of losses has been included. 

It is assumed here that almost all the N atoms are maintained in their ground 
states by some external influence. Standard techniques (Shen 1967, McNeil and Walls 
1974) then lead to the following master equation for the reduced density operator p of 
the light field: 

dp/dr = N J ( a l a l ~ ~ p ~ ~ a : a 2 -  2a:a:azalalaip -2pa:a:uzalala:), (2) 

where J is proportional to the modulus squared of the dipole matrix element Xi. The 
master equation for the diagonal matrix elements Pn,m of the density operator p in the 
Fock representation which follows immediately from (2), can then be written as 

dPn,m(T)/dT=(n +l)(n +2)mP,+z,m-i-n(n-l)(m + l)Pn,m, (3 1 
where T = NJr is a new time variable. Equation (3) is very often called the photon rate 
equation for the probability distribution P n , m ( ~ )  due to the fact that obviously it 
represents an equation for the probability that at time T, there are n and m photon 
numbers present respectively in the incident and scattered light beams. The pro- 
bability distribution is assumed to be normalised, and it is seen by summation of (3) 
that a normalised distribution remains normalised as the SHRE proceeds. 

In a previous paper (Simaan 1975), a Laplace transform method has been used to 
solve a photon rate equation which describes the stimulated Raman effect. Equation 
(3) in fact also proves tractable to solution by the method of Laplace transform, and 
therefore by following exactly the same general procedure as that of Simaan (1975), 
the solution of equation (3) can be written as follows: 
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where 

F ,  = ( n  + 2 P ) ( n  + 2 p  - l)(m - p  + l), 
for m = 0 

for m > 0, 

1 for Fv. = Fv 

otherwise, 
ijFy,Fy = { 

for m even or zero 
A ={I” n a m ,  

for m odd 

1 

2(m - 1) 

for $(m - n )  integer 

for f ( m  - n + 1) integer 

for f ( m  - n - 1) integer $(m - n  - 1) 

n < m ,  

and the initial joint distribution Pn+za,m-u(0) has been replaced -y a p r o u c t  of the 
single initial distributions Q,+Z~ (0) and Z?m-u(0). 

Equation (4) enables computation of the complete joint probability distribution 
P,,,(T) for an arbitrary time r and any initial distributions Qn+20(0) and Rm-u(0). 
Figure 1 shows the distribution P,,, as a function of n and m with the fixed time 
r = 0.05, the incident beam being initially coherent with a mean photon number equal 
to 10 and the scattered beam initially being a number state with no photons at the 
commencement of the SHRE. The time dependence of P,,, for the case of an initially 
chaotic incident beam is presented in figure 2 for the same conditions as in figure 1. 
The time evolution of the moments, degrees of second-order coherence and the 
correlation function of the two light beams involved in the SHRE can also be obtained 
directly from (4) by following a method similar to that of Simaan (1975). In fact we 
have carried out the calculations for these functions, and the results in general show 
that the statistical changes in the incident beam are in a way similar to those due to the 

Figure 1. Joint probability distributions P,,,,,, as functions of n and m for the time 
T = 0.05, and initially coherent pump beam with a mean photon number A,,= 10, and an 
initially number-state scattered beam which has no photons in it. 
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Figure 2. Joint probability distributions P",,,, as functions of n and m for the time 
T = 0.05, an initially chaotic pump beam with a mean photon number io = 10, and an 
initially scattered beam which has no photons in it. 

process of single-beam two photon absorption (Simaan and Loudon 1975, 1978). On 
the other hand, the statistical behaviours of the scattered beam are found to be quite 
similar to those of the corresponding beam due to the stimulated Raman effect 
(Simaan 1975). Having clearly established these similarities, I was advised not to 
present the numberical calculations in detail as it was unnecessary. Therefore at this 
stage I shall conclude the discussion, but not before pointing out that numerical results 
on the SHRE also showed that the degree of second-order coherence for the incident 
beams falls below the unit value characteristic of coherent light. This is due to the 
effect of photon antibunching which has been the subject of much interest recently 
(Loudon 1976). 

Acknowledgments 

I wish to thank Professor R Loudon for stimulating discussions. 

References 

Long D A 1972 Proc. 3rd Int. Conf. on Raman Spectroscopy, Reims, France 
Long D A and Stanton L 1970 Proc. R. Soc. A 318 441-57 
Loudon R 1976 Phys. Bull. 27 21-3 
McNeil K J and Walls D F 1974 J.  Phys. A:  Math., Nucl. Gen. 7 617-31 
Shen Y R 1967 Phys. Reo. 155 921-31 
Simaan H D 1975 J. Phys. A:  Math. Gen. 8 1620-37 
Simaan H D and Loudon R 1975 J. Phys. A:  Math. Gen. 8 539-54 
- 1978 J. Phys. A:  Math. Gen. 11 435-41 


